11 research outputs found

    Cooperative power control approaches towards fair radio resource allocation for wireless network

    Get PDF
    Performance optimization in wireless networks is a complex problem due to variability and dynamics in network topology and density, traffic patterns, mutual interference, channel uncertainties, etc. Opportunistic or selfish approaches may result in unbalanced allocation of channel capacity where particular links are overshadowed. This degrades overall network fairness and hinders a multi-hop communication by creating bottlenecks. A desired approach should allocate channel capacity proportionally to traffic priority in a cooperative manner. This work consists of two chapters that address the fairness share problem in wireless ad hoc, peer-to-peer networks and resource allocation within Cognitive Radio network. In the first paper, two fair power control schemes are proposed and mathematically analyzed. The schemes dynamically determine the viable resource allocation for a particular peer-to-peer network. In contrast, the traditional approaches often derive such viable capacity for a class of topologies. Moreover, the previous power control schemes assume that the target capacity allocation, or signal-to-interference ratio (SIR), is known and feasible. This leads to unfairness if the target SIR is not viable. The theoretical and simulation results show that the capacity is equally allocated for each link in the presence of radio channel uncertainties. In the second paper, based on the fair power control schemes, two novel power control schemes and an integrated power control scheme are proposed regarding the resource allocation for Cognitive Radio network to increase the efficiency of the resource while satisfying the Primary Users\u27 Quality of Service. Simulation result and tradeoff discussion are given --Abstract, page iv

    Source apportionment of PM2.5 at urban and suburban areas of the Pearl River Delta region, south China - With emphasis on ship emissions

    No full text
    Daily PM2.5 samples were collected at an urban site in Guangzhou in 2014 and at a suburban site in Zhuhai in 2014-2015. Samples were subject to chemical analysis for various chemical components including organic carbon (OC), element carbon (EC), major water-soluble inorganic ions, and trace elements. The annual average PM2.5 mass concentration was 48 +/- 22 mu g m(-3)and 45 +/- 25 mu g m(-3) in Guangzhou and Zhuhai, respectively, with the highest seasonal average concentration in winter and the lowest in summer at both sites. Regional transport of pollutants accompanied with different air mass origins arriving at the two sites and pollution sources in between the two cities caused larger seasonal variations in Zhuhai (&gt;a factor of 3.5) than in Guangzhou (17% of PM2.5 mass concentrations. (C) 2016 Elsevier B.V. All rights reserved.</a

    Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome

    No full text
    The emergence of super-resolution (SR) fluorescence microscopy has rejuvenated the search for new cellular substructures. However, SR fluorescence microscopy achieves high contrast at the expense of a holistic view of the interacting partners and surrounding environment. Thus, we developed SR fluorescence-assisted diffraction computational tomography (SR-FACT), which combines label-free three-dimensional optical diffraction tomography (ODT) with two-dimensional fluorescence Hessian structured illumination microscopy. The ODT module is capable of resolving the mitochondria, lipid droplets, the nuclear membrane, chromosomes, the tubular endoplasmic reticulum, and lysosomes. Using dual-mode correlated live-cell imaging for a prolonged period of time, we observed novel subcellular structures named dark-vacuole bodies, the majority of which originate from densely populated perinuclear regions, and intensively interact with organelles such as the mitochondria and the nuclear membrane before ultimately collapsing into the plasma membrane. This work demonstrates the unique capabilities of SR-FACT, which suggests its wide applicability in cell biology in general
    corecore